If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap C \cap D$
$A \cap C \cap D=\{A \cap C\} \cap D=\{11\} \cap\{15,17\}=\varnothing$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-B$
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X-Y$
If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to
State whether each of the following statement is true or false. Justify you answer.
$\{2,6,10,14\}$ and $\{3,7,11,15\}$ are disjoint sets.
$A \cap \left( {B \cup C} \right)$
Confusing about what to choose? Our team will schedule a demo shortly.