4-1.Complex numbers
medium

જો $\left(\frac{1+i}{1-i}\right)^{\frac{m}{2}}=\left(\frac{1+i}{i-1}\right)^{\frac{n}{3}}=1,(m, n \in N)$ હોય તો  $m$ અને $n$ ની ન્યૂનતમ કિમતનો ગુ.સા.અ. શોધો 

A

$4$

B

$8$

C

$12$

D

$2$

(JEE MAIN-2020)

Solution

$\left(\frac{1+i}{1-i}\right)^{m / 2}=\left(\frac{1+i}{i-1}\right)^{n / 3}=1$

$\Rightarrow\left(\frac{(1+i)^{2}}{2}\right)^{m / 2}=\left(\frac{(1+i)^{2}}{-2}\right)^{n / 3}=1$

$\Rightarrow \quad( i )^{ m / 2}=(- i )^{ n / 3}=1$

$\Rightarrow \frac{ m }{2}=4 k _{1}$ and $\frac{ n }{3}=4 k _{2}$

$\Rightarrow m =8 k _{1}$ and $n =12 k _{2}$

Least value of $m =8$ and $n =12$

$\therefore \quad GCD =4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.