- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
જો $\left(\frac{1+i}{1-i}\right)^{\frac{m}{2}}=\left(\frac{1+i}{i-1}\right)^{\frac{n}{3}}=1,(m, n \in N)$ હોય તો $m$ અને $n$ ની ન્યૂનતમ કિમતનો ગુ.સા.અ. શોધો
A
$4$
B
$8$
C
$12$
D
$2$
(JEE MAIN-2020)
Solution
$\left(\frac{1+i}{1-i}\right)^{m / 2}=\left(\frac{1+i}{i-1}\right)^{n / 3}=1$
$\Rightarrow\left(\frac{(1+i)^{2}}{2}\right)^{m / 2}=\left(\frac{(1+i)^{2}}{-2}\right)^{n / 3}=1$
$\Rightarrow \quad( i )^{ m / 2}=(- i )^{ n / 3}=1$
$\Rightarrow \frac{ m }{2}=4 k _{1}$ and $\frac{ n }{3}=4 k _{2}$
$\Rightarrow m =8 k _{1}$ and $n =12 k _{2}$
Least value of $m =8$ and $n =12$
$\therefore \quad GCD =4$
Standard 11
Mathematics