જો $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ તો $A$ અને $B$ શોધો.
$\sin ( A - B )=\frac{1}{2},$ હોવાથી, $A - B =30^{\circ}$ ......$(1)$
અને $\cos ( A + B )=\frac{1}{2},$ હોવાથી $A + B =60^{\circ}$ ......$(2)$
$(1)$ અને $(2),$ નો ઉકેલ શોધતાં,
આપણને $A=45^{\circ}$ અને $B=15^{\circ}$ મળે.
$\triangle$ $ABC ,$ માં $\angle B$ કાટખૂણો છે. જો $\tan A =\frac{1}{\sqrt{3}},$ હોય, તો નિમ્નલિખિત મૂલ્ય શોધો.
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$
કિંમત શોધો :
$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
નિત્યસમ $\operatorname{cosec}^{2} A=1+\cot ^{2} A$ નો ઉપયોગ કરીને $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$ સાબિત કરો.
ત્રિકોણમિતીય ગુણોતરો $\cos A ,$ $\tan A$ અને $\sec A$ ને $\sin A$ ના સ્વરૂપમાં દર્શાવો.
જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$