2. Polynomials
easy

જો $a+b+c=0,$ હોય, તો $a^{3}+b^{3}+c^{3}=$..................છે. 

A

$0$

B

$3abc$

C

$abc$

D

$2abc$

Solution

We know that

$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$

As $a+b+c=0,$ so, $a^{3}+b^{3}+c^{3}-3 a b c=(0)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$

Hence, $a^{3}+b^{3}+c^{3}=3 a b c$

Therefore, $(b)$ $3 abc$ is the correct answer.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.