If $C$ and $V$ represent capacity and voltage respectively then what are the dimensions of $\lambda,$ where $\frac{ C }{ V }=\lambda ?$
$\left[ M ^{-2} L ^{-3} I ^{2} T ^{6}\right]$
$\left[ M ^{-3} L ^{-4} I ^{3} T ^{7}\right]$
$\left[ M ^{-1} L ^{-3} I ^{-2} T ^{-7}\right]$
$\left[ M ^{-2} L ^{-4} I ^{3} T ^{7}\right]$
Which of the following pair does not have similar dimensions
The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $K$ is given by a relation of this type $f = C\,{m^x}{K^y}$; where $C$ is a dimensionless quantity. The value of $x$ and $y$ are
Match List $I$ with List $II$
LIST$-I$ | LIST$-II$ |
$(A)$ Torque | $(I)$ $ML ^{-2} T ^{-2}$ |
$(B)$ Stress | $(II)$ $ML ^2 T ^{-2}$ |
$(C)$ Pressure of gradient | $(III)$ $ML ^{-1} T ^{-1}$ |
$(D)$ Coefficient of viscosity | $(IV)$ $ML ^{-1} T ^{-2}$ |
Choose the correct answer from the options given below
Match List$-I$ with List$-II.$
List$-I$ | List$-II$ |
$(a)$ Torque | $(i)$ ${MLT}^{-1}$ |
$(b)$ Impulse | $(ii)$ ${MT}^{-2}$ |
$(c)$ Tension | $(iii)$ ${ML}^{2} {T}^{-2}$ |
$(d)$ Surface Tension | $(iv)$ ${MI} {T}^{-2}$ |
Choose the most appropriate answer from the option given below :
Dimensional formula for angular momentum is