If $y = 1 + x + {{{x^2}} \over {2\,!}} + {{{x^3}} \over {3\,!}} + ..... + {{{x^n}} \over {n\,!}}$, then ${{dy} \over {dx}} = $

  • A
    y
  • B
    $y + {{{x^n}} \over {n!}}$
  • C
    $y - {{{x^n}} \over {n!}}$
  • D
    $y - 1 - {{{x^n}} \over {n!}}$

Similar Questions

Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

If $y = 1 + x + {{{x^2}} \over {2!}} + {{{x^3}} \over {3!}} + .....\infty ,$then ${{dy} \over {dx}} = $

Write two properties of vector addition.

The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is

The sum of two forces $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ is $\overrightarrow{\mathrm{R}}$ such that $|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{P}}| .$ The angle $\theta$ (in degrees) that the resultant of $2 \overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ will make with $\overrightarrow{\mathrm{Q}}$ is

  • [JEE MAIN 2020]