7.Gravitation
medium

If ${R}_{{E}}$ be the radius of Earth, then the ratio between the acceleration due to gravity at a depth $' {r} '$ below and a height $' r '$ above the earth surface is:

(Given : $\left.{r}<{R}_{{E}}\right)$

A

$1-\frac{{r}}{{R}_{{E}}}-\frac{{r}^{2}}{{R}_{{E}}^{2}}-\frac{{r}^{3}}{{R}_{{E}}^{3}}$

B

$1+\frac{{r}}{{R}_{{E}}}+\frac{{r}^{2}}{{R}_{{E}}^{2}}+\frac{{r}^{3}}{{R}_{{E}}^{3}}$

C

$1+\frac{{r}}{{R}_{{E}}}-\frac{{r}^{2}}{{R}_{{E}}^{2}}+\frac{{r}^{3}}{{R}_{{E}}^{3}}$

D

$1+\frac{{r}}{{R}_{{E}}}-\frac{{r}^{2}}{{R}_{{E}}^{2}}-\frac{{r}^{3}}{{R}_{{E}}^{3}}$

(JEE MAIN-2021)

Solution

$g_{u p}=\frac{g}{\left(1+\frac{r}{R}\right)^{2}}$

$g_{d o w n}=g\left(1-\frac{r}{R}\right)$

$\frac{{g}_{\text {down }}}{{g}_{{up}}}=\left(1-\frac{{r}}{{R}}\right)\left(1+\frac{{r}}{{R}}\right)^{2}$

$=\left(1-\frac{{r}}{{R}}\right)\left(1+\frac{2 {r}}{{R}}+\frac{{r}^{2}}{{R}^{2}}\right)$

$=1+\frac{{r}}{{R}}-\frac{{r}^{2}}{{R}^{2}}-\frac{{r}^{3}}{{R}^{3}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.