Gujarati
4-1.Complex numbers
hard

यदि सम्मिश्र संख्या $z$ इस प्रकार है कि $\left|z^3+z^{-3}\right| \leq 2$, तो $\left|z+z^{-1}\right|$ का अधिकतम संभव मान होगा :

A

$2$

B

$\sqrt[3]{2}$

C

$2 \sqrt{2}$

D

$1$

(KVPY-2015)

Solution

(a)

We have, $\left|z^3+z^{-3}\right| \leq 2$

Now, $\left|z^3+\frac{1}{z^3}\right| \leq 2$

$\Rightarrow \quad\left|z^3+\frac{1}{z^3}\right| \leq\left|z^3\right|+\frac{1}{\left|z^3\right|}$

$\left.\Rightarrow \frac{|z|^3+\frac{1}{|z|^3}}{2} \geq \sqrt{|z|^3 \frac{1}{|z|^3}} \quad \because \text { AM } \geq GM \right]$

$\Rightarrow|z|^3+\frac{1}{|z|^3} \geq 2 \Rightarrow|z|^3+\frac{1}{|z|^3}=2$

$\therefore \quad|z|=1$

$\therefore \text { Maximum value of }\left|z+\frac{1}{z}\right| \leq|z|+\frac{1}{|z|}=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.