- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
यदि सम्मिश्र संख्या $z$ इस प्रकार है कि $\left|z^3+z^{-3}\right| \leq 2$, तो $\left|z+z^{-1}\right|$ का अधिकतम संभव मान होगा :
A
$2$
B
$\sqrt[3]{2}$
C
$2 \sqrt{2}$
D
$1$
(KVPY-2015)
Solution
(a)
We have, $\left|z^3+z^{-3}\right| \leq 2$
Now, $\left|z^3+\frac{1}{z^3}\right| \leq 2$
$\Rightarrow \quad\left|z^3+\frac{1}{z^3}\right| \leq\left|z^3\right|+\frac{1}{\left|z^3\right|}$
$\left.\Rightarrow \frac{|z|^3+\frac{1}{|z|^3}}{2} \geq \sqrt{|z|^3 \frac{1}{|z|^3}} \quad \because \text { AM } \geq GM \right]$
$\Rightarrow|z|^3+\frac{1}{|z|^3} \geq 2 \Rightarrow|z|^3+\frac{1}{|z|^3}=2$
$\therefore \quad|z|=1$
$\therefore \text { Maximum value of }\left|z+\frac{1}{z}\right| \leq|z|+\frac{1}{|z|}=2$
Standard 11
Mathematics