4-1.Complex numbers
medium

${(1 - \cos \theta  + 2i\sin \theta )^{ - 1}}$ का वास्तविक भाग है

A

$\frac{1}{{3 + 5\cos \theta }}$

B

$\frac{1}{{5 - 3\cos \theta }}$

C

$\frac{1}{{3 - 5\cos \theta }}$

D

$\frac{1}{{5 + 3\cos \theta }}$

(IIT-1978) (IIT-1986)

Solution

(d) ${\{ (1 – \cos \theta ) + i.2\sin \theta \} ^{ – 1}} = {\left\{ {2{{\sin }^2}\frac{\theta }{2} + i.4\sin \frac{\theta }{2}\cos \frac{\theta }{2}} \right\}^{ – 1}}$

= ${\left( {2\sin \frac{\theta }{2}} \right)^{ – 1}}{\left\{ {\sin \frac{\theta }{2} + i.2\cos \frac{\theta }{2}} \right\}^{ – 1}}$

 $ = {\left( {2\sin \frac{\theta }{2}} \right)^{ – 1}}\frac{1}{{\sin \frac{\theta }{2} + i.2\cos \frac{\theta }{2}}} \times \frac{{\sin \frac{\theta }{2} – i.2\cos \frac{\theta }{2}}}{{\sin \frac{\theta }{2} – i.2\cos \frac{\theta }{2}}}$

$ = \frac{{\sin \frac{\theta }{2} – i.2\cos \frac{\theta }{2}}}{{2\sin \frac{\theta }{2}\left( {{{\sin }^2}\frac{\theta }{2} + 4{{\cos }^2}\frac{\theta }{2}} \right)}}$.

यह वास्तविक भाग है। 

$ = \frac{{\sin \frac{\theta }{2}}}{{2\sin \frac{\theta }{2}\left( {1 + 3{{\cos }^2}\frac{\theta }{2}} \right)}} = \frac{1}{{2\left( {1 + 3{{\cos }^2}\frac{\theta }{2}} \right)}}$$ = \frac{1}{{5 + 3\cos \theta }}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.