જો બે ગણો $A$ અને $B$ હોય તો $(A -B) \cup (B -A) \cup (A \cap B) $
$A \cup B$
$A \cap B$
$A$
$B'$
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $A=(A \cap B) \cup(A-B)$ અને $A \cup(B-A)=(A \cup B).$
જો $A ,B$ અને $C$ એ ત્રણ ગણ છે કે જેથી $A \cap B = A \cap C$ અને $A \cup B = A \cup C$ બને તો.,
જો ગણ $A$ અને $B$ માટે$A = \{ (x,\,y):y = {e^x},\,x \in R\} $; $B = \{ (x,\,y):y = x,\,x \in R\} ,$ હોય તો . .
જો $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે $\} ,B = \{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ $C = \{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ અને $D = \{ x:x$ એ અવિભાજ્ય સંખ્યા છે, $\} $ તો મેળવો : $A \cap B$
જો ${N_a} = \{ an:n \in N\} ,$ તો ${N_3} \cap {N_4} = $