જો બે ગણો $A$ અને $B$ હોય તો $(A -B) \cup (B -A) \cup (A \cap B) $
$A \cup B$
$A \cap B$
$A$
$B'$
જો $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે $\} ,B = \{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ $C = \{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ અને $D = \{ x:x$ એ અવિભાજ્ય સંખ્યા છે, $\} $ તો મેળવો : $B \cap D$
$A=\{a, b\}, B=\{a, b, c\}$ લો. $A \subset B $ છે ? $A \cup B $ શું થશે ?
સાબિત કરો કે નીચે આપેલી ચારેય શરતો સમકક્ષ છે :$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે ? $ P(A) \cup P(B)=P(A \cup B)$ સત્ય છે ? તમારા જવાબની યથાર્થતા ચકાસો.
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $B-D$