જો બે ગણો $A$ અને $B$ હોય તો $(A -B) \cup (B -A) \cup (A \cap B) $
$A \cup B$
$A \cap B$
$A$
$B'$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-B$
જો $A, B $ અને $C$ એ ત્રણ ગણ હોય તો $(A -B) \cup (B -A)$ મેળવો.
જો બે ગણો $S$ અને $T$ માટે $S$ માં $21$ ઘટકો, $T$ માં $32$ ઘટકો અને $S$ $\cap \,T$ માં $11$ ઘટકો હોય, તો $S\, \cup$ $T$ માં કેટલા ઘટકો હશે ?
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $B-D$
જો $\mathrm{R}$ એ વાસ્તવિક સંખ્યાઓનો ગણ અને $\mathrm{Q}$ સંમેય સંખ્યાઓનો ગણ હોય, તો $\mathrm{R-Q}$ થશે ?