જો બે ગણો $A$ અને $B$ હોય તો $(A -B) \cup (B -A) \cup (A \cap B) $
$A \cup B$
$A \cap B$
$A$
$B'$
યોગગણ લખો : $A=\{a, e, i, o, u\} B=\{a, b, c\}$
ગણ $A, B$ અને $C$ એવા શોધો કે જેથી $A \cap B, B \cap C$ અને $A \cap C$ અરિક્ત ગણો થાય અને $A \cap B \cap C=\varnothing$ બને.
છેદગણ શોધો : $A=\{a, e, i, o, u\} B=\{a, b, c\}$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-A$
આપેલ સંબંધ જુઓ :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
પૈકી . . . . સત્ય છે.