If $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ then $(A \cup B) \cap C$ is
$\{3, 4, 6\}$
$\{1, 2, 3\}$
$\{1, 4, 3\}$
None of these
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup C} \right)$
Using that for any sets $\mathrm{A}$ and $\mathrm{B},$
$A \cup(A \cap B)=A$
Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then
If $A$ and $B$ are sets, then $A \cap (B -A)$ is
If $A$ and $B$ are any two sets, then $A \cap (A \cup B)$ is equal to