Basic of Logarithms
easy

જો ${1 \over {x(x + 1)\,(x + 2)....(x + n)}} = {{{A_0}} \over x} + {{{A_1}} \over {x + 1}} + {{{A_2}} \over {x + 2}} + .... + {{{A_n}} \over {x + n}}$ તો ${A_r} = $

A

${{r!{{( - 1)}^r}} \over {(n - r)!}}$

B

${{{{( - 1)}^r}} \over {r!(n - r)!}}$

C

${1 \over {r!(n - r)!}}$

D

એકપણ નહીં

Solution

(b) $1 = {A_0}(x + 1)\,(x + 2)….(x + n) + {A_1}x(x + 2)\,(x + 3)…(x + n)$

$ + … + {A_r}x(x + 1)\,(x + 2)….(x + r – 1)\,(x + r + 1)\,(x + r + 2)$     $…….(x + n)$

Putting $x = – r$,

$1 = {A_r}( – r)\,( – r + 1)\,( – r + 2),\,…..( – 1).1.2….( – r + n)$

$ \Rightarrow $ $1 = {A_r}.{( – 1)^r}r!.(n – r)\,!$; ${A_r} = {{{{( – 1)}^r}} \over {r\,!\,(n – r)\,!}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.