If $i = \sqrt { - 1} $, then $1 + {i^2} + {i^3} - {i^6} + {i^8}$ is equal to
$2 - i$
$1$
$3$
$ - 1$
(a) $1 + {i^2} + {i^3} – {i^6} + {i^8} = 1 – 1 – i + 1 + 1 = 2 – i$.
If $z \neq 0$ be a complex number such that $\left| z -\frac{1}{ z }\right|=2$, then the maximum value of $|z|$ is.
Solve the equation $27 x^{2}-10 x+1=0$
The least positive integer $\mathrm{n}$ such that $\frac{(2 \mathrm{i})^{\mathrm{n}}}{(1-\mathrm{i})^{\mathrm{n}-2}}, \mathrm{i}=\sqrt{-1}$ is a positive integer, is ….. .
If ${\left( {\frac{{1 – i}}{{1 + i}}} \right)^{100}} = a + ib$, then
If $|{a_k}| < 1,{\lambda _k} \ge 0$ for $k = 1,\,2,….n$ and ${\lambda _1} + {\lambda _2} + … + {\lambda _n} = 1,$ then the value of $|{\lambda _1}{a_1} + {\lambda _2}{a_2} + ….{\lambda _n}{a_n}|$ is
Confusing about what to choose? Our team will schedule a demo shortly.