- Home
- Standard 11
- Mathematics
4-1.Complex numbers
easy
If ${\left( {\frac{{1 - i}}{{1 + i}}} \right)^{100}} = a + ib$, then
A
$a = 2,b = - 1$
B
$a = 1,b = 0$
C
$a = 0,b = 1$
D
$a = - 1,b = 2$
Solution
(b) Given, ${\left( {\frac{{1 – i}}{{1 + i}}} \right)^{100}} = a + ib$; $\left[ {\left( {\frac{{1 – i}}{{1 + i}}} \right) \times \left( {\frac{{1 – i}}{{1 – i}}} \right)} \right] = a + ib$
==> $a + ib = {\left[ {\frac{{{{(1 – i)}^2}}}{2}} \right]^{100}} = {\left[ {\frac{{ – 2i}}{2}} \right]^{100}} = {( – i)^{100}}$
==> $a + ib = {\left[ {{{(i)}^4}} \right]^{25}} = 1 + 0i,$Hence, $a = 1,b = 0$.
Standard 11
Mathematics