4-1.Complex numbers
easy

If $x + \frac{1}{x} = 2\cos \theta ,$ then $x$ is equal to

A

$\cos \theta + i\,\sin \theta $

B

$\cos \theta - i\,\sin \theta $

C

$\cos \theta \pm i\,\sin \theta $

D

$\sin \theta \pm i\,\cos \theta $

Solution

(c) $x + \frac{1}{x} = 2\cos \theta $$ \Rightarrow \,{x^2} – 2x\cos \theta + 1 = 0$
==> $x = \frac{{2\cos \theta \pm \sqrt {4{{\cos }^2}\theta – 4} }}{2}$ ==> $x = \cos \theta \pm i\sin \theta $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.