Gujarati
4-1.Complex numbers
hard

Let $z$ be a complex number such that the imaginary part of $z$ is non zero and $a=z^2+z+1$ is real. Then a cannot take the value

A

$-1$

B

$\frac{1}{3}$

C

$\frac{1}{2}$

D

$\frac{3}{4}$

(IIT-2012)

Solution

Here $z^2+z+1-a=0$

$\Rightarrow \quad z=\frac{-1 \pm \sqrt{4 a-3}}{2}$

Here $\quad a \neq \frac{3}{4}$ otherwise $z$ will be purely real.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.