- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
Let $z$ be a complex number such that the imaginary part of $z$ is non zero and $a=z^2+z+1$ is real. Then a cannot take the value
A
$-1$
B
$\frac{1}{3}$
C
$\frac{1}{2}$
D
$\frac{3}{4}$
(IIT-2012)
Solution
Here $z^2+z+1-a=0$
$\Rightarrow \quad z=\frac{-1 \pm \sqrt{4 a-3}}{2}$
Here $\quad a \neq \frac{3}{4}$ otherwise $z$ will be purely real.
Standard 11
Mathematics