Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

If $2 x-y+1=0$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{16}=1$, then which of the following $CANNOT$ be sides of a right angled triangle?

$[A]$ $2 a, 4,1$   $[B]$ $2 a, 8,1$   $[C]$ $a, 4,1$    $[D]$ $a, 4,2$

A

$A,D$

B

$B,D$

C

$B,C$

D

$B,C,D$

(IIT-2017)

Solution

Tangent to $\frac{x^2}{a^2}-\frac{y^2}{4^2}=1$ is

$\mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^2 \mathrm{~m}^2-16}$

Comparing with $\mathrm{y}=2 \mathrm{x}+1$

$\mathrm{m}=2$

$\Rightarrow 4 \mathrm{a}^2-16=1$

$\mathrm{a}^2=\frac{17}{4}$

$\mathrm{a}=\frac{\sqrt{17}}{2}$

Only $2 \mathrm{a}, 4,1$ are sides of a right-angled triangle

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.