Let the tangent to the parabola $y^2=12 x$ at the point $(3, \alpha)$ be perpendicular to the line $2 x+2 y=3$.Then the square of distance of the point $(6,-4)$from the normal to the hyperbola $\alpha^2 x^2-9 y^2=9 \alpha^2$at its point $(\alpha-1, \alpha+2)$ is equal to $........$.
$116$
$115$
$114$
$113$
Let $A$ be a point on the $x$-axis. Common tangents are drawn from $A$ to the curves $x^2+y^2=8$ and $y^2= 16x.$ If one of these tangents touches the two curves at $Q$ and $R$, then $( QR )^2$ is equal to
The equation of the tangents to the hyperbola $4x^2 -y^2 = 12$ are $y = 4x+ c_1 \,$$ \& \, y = 4x + c_2,$ then $|c_1 -c_2|$ is equal to -
Let $a$ and $b$ be positive real numbers such that $a > 1$ and $b < a$. Let $P$ be a point in the first quadrant that lies on the hyperbola $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$. Suppose the tangent to the hyperbola at $P$ passes through the point $(1,0)$, and suppose the normal to the hyperbola at $P$ cuts off equal intercepts on the coordinate axes. Let $\Delta$ denote the area of the triangle formed by the tangent at $P$, the normal at $P$ and the $x$-axis. If $e$ denotes the eccentricity of the hyperbola, then which of the following statements is/are $TRUE$?
$(A)$ $1 < e < \sqrt{2}$
$(B)$ $\sqrt{2} < e < 2$
$(C)$ $\Delta=a^4$
$(D)$ $\Delta=b^4$
Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to
If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36,$ then which one of the following is true?