Trigonometrical Equations
medium

If $\theta \in[-2 \pi, 2 \pi]$, then the number of solutions of $2 \sqrt{2} \cos ^2 \theta+(2-\sqrt{6}) \cos \theta-\sqrt{3}=0$, is equal to:

A$12$
B$6$
C$8$
D$10$
(JEE MAIN-2025)

Solution

$2 \sqrt{2} \cos ^2 \theta+2 \cos \theta-\sqrt{6} \cos \theta-\sqrt{3}=0$
$(2 \cos \theta-\sqrt{3})(\sqrt{2} \cos \theta+1)=0$
$\cos \theta=\frac{\sqrt{3}}{2}, \frac{-1}{\sqrt{2}}$
Number of solution $=8$
Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.