The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is
$\left\{ {\frac{\pi }{3},\,\frac{{2\pi }}{3}} \right\}$
$\left\{ {\frac{\pi }{3},\,\pi } \right\}$
$\left\{ {\frac{{2\pi }}{3},\frac{{4\pi }}{3}} \right\}$
$\left\{ {\frac{{2\pi }}{3},\frac{{5\pi }}{3}} \right\}$
Number of solution$(s)$ of the equation $\sin 2\theta + \cos 2\theta = - \frac{1}{2},\theta \in \left( {0,\frac{\pi }{2}} \right)$ is-
If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to:
The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to:
The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :
If $K = sin^6x + cos^6x$, then $K$ belongs to the interval