The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is
$\left\{ {\frac{\pi }{3},\,\frac{{2\pi }}{3}} \right\}$
$\left\{ {\frac{\pi }{3},\,\pi } \right\}$
$\left\{ {\frac{{2\pi }}{3},\frac{{4\pi }}{3}} \right\}$
$\left\{ {\frac{{2\pi }}{3},\frac{{5\pi }}{3}} \right\}$
If $\mathrm{n}$ is the number of solutions of the equation
$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$
and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :
Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are
If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
If $\cos p\theta = \cos q\theta ,p \ne q$, then