If $p$ times the ${p^{th}}$ term of an $A.P.$ is equal to $q$ times the ${q^{th}}$ term of an $A.P.$, then ${(p + q)^{th}}$ term is

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in

Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$

Let $A B C D$ be a quadrilateral such that there exists a point $E$ inside the quadrilateral satisfying $A E=B E=C E=D E$. Suppose $\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set $\{\angle D A B, \angle A B C, \angle B C D\}$ is

  • [KVPY 2020]

If the variance of the terms in an increasing $A.P.$, $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ is $90,$ then the common difference of this $A.P.$ is

  • [JEE MAIN 2020]

If three numbers be in $G.P.$, then their logarithms will be in