If $a,b,c$ are in $A.P.$, then ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ are in
$A.P.$
$G.P.$ only when $x > {\rm{0}}$
$G.P.$ if $x < 0$
$G.P.$ for all $x \ne 0$
If $x,\,2x + 2,\,3x + 3,$are in $G.P.$, then the fourth term is
If the first and the $n^{\text {th }}$ term of a $G.P.$ are $a$ and $b$, respectively, and if $P$ is the product of $n$ terms, prove that $P^{2}=(a b)^{n}$
$2.\mathop {357}\limits^{ \bullet \,\, \bullet \,\, \bullet } = $
For what values of $x$, the numbers $\frac{2}{7}, x,-\frac{7}{2}$ are in $G.P.$?
Let $a _1, a _2, a _3, \ldots$ be a $G.P.$ of increasing positive numbers. Let the sum of its $6^{\text {th }}$ and $8^{\text {th }}$ terms be $2$ and the product of its $3^{\text {rd }}$ and $5^{\text {th }}$ terms be $\frac{1}{9}$. Then $6\left( a _2+\right.$ $\left.a_4\right)\left(a_4+a_6\right)$ is equal to