Gujarati
8. Sequences and Series
normal

If $a,b,c$ are in $A.P.$, then ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ are in

A

$A.P.$

B

$G.P.$ only when $x > {\rm{0}}$

C

$G.P.$ if $x < 0$

D

$G.P.$ for all $x \ne 0$

Solution

(d) $\frac{{{T_2}}}{{{T_1}}} = \frac{{{T_3}}}{{{T_2}}}$ $ \Rightarrow {2^{(b – a)x}} = {2^{(c – b)x}}$

$ \Rightarrow (b – a)x = (c – b)x$

==> $(b – a) = (c – b)$ $\forall \,x,x \ne 0$

$\therefore {2^{ax + 1}},{2^{bx + 1}},{2^{cx + 1}}$  is a $G.P.$,  $\forall \,\,x \ne 0.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.