If $1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ then $\alpha ,$ $(0 < \alpha < \pi )$ is
$\pi /8$
$\pi /6$
$\pi /4$
$3\pi /4$
Let $P(x)=1+x+x^2+x^3+x^4+x^5$. What is the remainder when $P\left(x^{12}\right)$ is divided by $P(x)$ ?
Insert two numbers between $3$ and $81$ so that the resulting sequence is $G.P.$
The number of natural number $n$ in the interval $[1005, 2010]$ for which the polynomial. $1+x+x^2+x^3+\ldots+x^{n-1}$ divides the polynomial $1+x^2+x^4+x^6+\ldots+x^{2010}$ is
The sum to infinity of the following series $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$, will be
The third term of a $G.P.$ is the square of first term. If the second term is $8$, then the ${6^{th}}$ term is