8. Sequences and Series
hard

The greatest integer less than or equal to the sum of first $100$ terms of the sequence $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ is equal to

A

$99$

B

$98$

C

$89$

D

$88$

(JEE MAIN-2022)

Solution

$\frac{1}{3}+\frac{5}{9}+\frac{19}{27}+\frac{65}{81}+\ldots$

$\left(1-\frac{2}{3}\right)+\left(1-\frac{4}{9}\right)+\left(1-\frac{8}{27}\right)+\left(1-\frac{16}{81}\right) \ldots .100 \text { terms }$

$100-\left[\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\ldots\right]$

$100-\frac{2}{3}\left(1-\left(\frac{2}{3}\right)^{100}\right)$

$100-2\left(1-\left(\frac{2}{3}\right)^{100}\right)$

$S =98+2\left(\frac{2}{3}\right)^{100}$

$\Rightarrow[ S ]=98$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.