If ${u_1}$ and ${u_2}$ are the units selected in two systems of measurement and ${n_1}$ and ${n_2}$ their numerical values, then
${n_1}{u_1} = {n_2}{u_2}$
${n_1}{u_1} + {n_2}{u_2} = 0$
${n_1}{n_2} = {u_1}{u_2}$
$({n_1} + {u_1}) = ({n_2} + {u_2})$
The unit of $L/R$ is (where $L$ = inductance and $R$ = resistance)
Faraday is the unit of
Which of the following system of units is not based on units of mass, length and time alone
Given that: $\lambda = a\,\cos \,\left( {\frac{t}{p} - qx} \right)$ , where $t$ represents time in second and $x$ represents distance in metre. Which of the following statements is true?
Some physical quantities are given in Column $I$ and some possible $SI$ units in which these quantities may be expressed are given in Column $II$. Match the physical quantities in Column $I$ with the units in Column $II$ and indicate your answer by darkening appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.
Column $I$ | Column $II$ |
$(A)$ $\mathrm{GM}_e \mathrm{M}_5$ $\mathrm{G} \rightarrow$ universal gravitational constant, $\mathrm{M}_{\mathrm{e}} \rightarrow$ mass of the earth, $\mathrm{M}_5 \rightarrow$ mass of the Sun |
$(p)$ (volt) (coulomb) (metre) |
$(B)$ $\frac{3 \mathrm{RT}}{\mathrm{M}} ; \mathrm{R} \rightarrow$ universal gas constant, $\mathrm{T} \rightarrow$ absolute temperature, $\mathrm{M} \rightarrow$ molar mass |
$(q)$ (kilogram) $(\text { metre) })^3$ (second) $)^{-2}$ |
$(C)$ $\frac{F^2}{q^2 B^2}$ ;$\quad F \rightarrow$ force, $q \rightarrow$ charge, $B \rightarrow$ magnetic field | $(r)$ $(\text { meter })^2$ (second) $)^{-2}$ |
$(D)$ $\frac{\mathrm{GM}_e}{\mathrm{R}_{\mathrm{e}}}, G \rightarrow$ universal gravitational constant, $\mathrm{M}_{\mathrm{e}} \rightarrow$ mass of the earth, $\mathrm{R}_{\mathrm{e}} \rightarrow$ radius of the earth |
$(s)$ (farad) $(\text { volt) })^2(\mathrm{~kg})^{-1}$ |