If $^n{C_r}$ denotes the number of combinations of $n$ things taken $r$ at a time, then the expression $^n{C_{r + 1}} + {\,^n}{C_{r - 1}} + \,2 \times {\,^n}{C_r}$ equals

  • [AIEEE 2003]
  • A

    $^{n + 2}{C_r}$

  • B

    $^{n + 2}{C_{r + 1}}$

  • C

    $^{n + 1}{C_r}$

  • D

    $^{n + 1}{C_{r + 1}}$

Similar Questions

Determine $n$ if

$^{2 n} C_{3}:\,^{n} C_{3}=12: 1$

Let

$S _1=\{( i , j , k ): i , j , k \in\{1,2, \ldots, 10\}\}$

$S _2=\{( i , j ): 1 \leq i < j +2 \leq 10, i , j \in\{1,2, \ldots, 10\}\},$

$S _3=\{( i , j , k , l): 1 \leq i < j < k < l, i , j , k , l \in\{1,2, \ldots ., 10\}\}$

$S _4=\{( i , j , k , l): i , j , k$ and $l$ are distinct elements in $\{1,2, \ldots, 10\}\}$

and  If the total number of elements in the set $S _t$ is $n _z, r =1,2,3,4$, then which of the following statements is (are) TRUE?

$(A)$ $n _1=1000$   $(B)$ $n _2=44$   $(C)$ $n _3=220$   $(D)$ $\frac{ n _4}{12}=420$

  • [IIT 2021]

The number of seven digit positive integers formed using the digits $1,2,3$ and $4$ only and sum of the digits equal to $12$ is $...........$.

  • [JEE MAIN 2023]

If $\alpha { = ^m}{C_2}$, then $^\alpha {C_2}$is equal to

In how many ways can $21$ English and  $19$ Hindi books be placed in a row so that no two Hindi books are together