If $^n{C_r}$ denotes the number of combinations of $n$ things taken $r$ at a time, then the expression $^n{C_{r + 1}} + {\,^n}{C_{r - 1}} + \,2 \times {\,^n}{C_r}$ equals
$^{n + 2}{C_r}$
$^{n + 2}{C_{r + 1}}$
$^{n + 1}{C_r}$
$^{n + 1}{C_{r + 1}}$
Determine $n$ if
$^{2 n} C_{3}:\,^{n} C_{3}=12: 1$
Let
$S _1=\{( i , j , k ): i , j , k \in\{1,2, \ldots, 10\}\}$
$S _2=\{( i , j ): 1 \leq i < j +2 \leq 10, i , j \in\{1,2, \ldots, 10\}\},$
$S _3=\{( i , j , k , l): 1 \leq i < j < k < l, i , j , k , l \in\{1,2, \ldots ., 10\}\}$
$S _4=\{( i , j , k , l): i , j , k$ and $l$ are distinct elements in $\{1,2, \ldots, 10\}\}$
and If the total number of elements in the set $S _t$ is $n _z, r =1,2,3,4$, then which of the following statements is (are) TRUE?
$(A)$ $n _1=1000$ $(B)$ $n _2=44$ $(C)$ $n _3=220$ $(D)$ $\frac{ n _4}{12}=420$
The number of seven digit positive integers formed using the digits $1,2,3$ and $4$ only and sum of the digits equal to $12$ is $...........$.
If $\alpha { = ^m}{C_2}$, then $^\alpha {C_2}$is equal to
In how many ways can $21$ English and $19$ Hindi books be placed in a row so that no two Hindi books are together