3 and 4 .Determinants and Matrices
medium

If $-9 $ is a root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ then the other two roots are

A

$2, 7$

B

$-2, 7$

C

$2, -7$

D

$-2, -7$

(IIT-1983)

Solution

(a) $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right|\, = 0$

$ \Rightarrow $ $(x + 9)\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\2&x&2\\7&6&x\end{array}\,} \right| = 0$,

by ${R_1} \to {R_1} + {R_2} + {R_3}$

$ \Rightarrow $ $(x + 9)\,\{ ({x^2} – 12) – (2x – 14) + (12 – 7x)\} = 0$

$ \Rightarrow $ $(x + 9)\,({x^2} – 9x + 14) = 0$

$ \Rightarrow (x + 9)(x – 2)\,(x – 7) = 0$

Hence the other two roots are $x = 2,\,7$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.