- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $ \alpha _1, \alpha _2$ are two values of $\alpha $ for which the system $2 \alpha x + y = 5, x - 6y = \alpha $ and $x + y = 2$ is consistent, then $ |2(\alpha _1 + \alpha _2)| $ is -
A
$21$
B
$23$
C
$25$
D
$27$
Solution
$\left|\begin{array}{ccc}{2 \alpha} & {1} & {5} \\ {1} & {-6} & {\alpha} \\ {1} & {1} & {2}\end{array}\right|=0$
$2 \alpha(-12-\alpha)-(2-\alpha)+5(7)=0$
$2 \alpha^{2}-24 \alpha-2+\alpha+35=0$
$2 \alpha^{2}-23 \alpha+33=0$
$\alpha_{1}+\alpha_{2}=\frac{23}{2}$
Standard 12
Mathematics
Similar Questions
normal