यदि $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$, तो $ k $ का मान है  

  • [IIT 1979]
  • A

    $-1$

  • B

    $0$

  • C

    $1$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि ${a_1},{a_2},{a_3}.....{a_n}....$ गुणोत्तर श्रेणी में हैं, तब सारणिक $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ का मान होगा

  • [AIEEE 2004]

$\alpha $ के किस मान के लिए समीकरण निकाय ${(\alpha  + 1)^3}x + {(\alpha  + 2)^3}y - {(\alpha  + 3)^3} = 0$, $(\alpha  + 1)x + (\alpha  + 2)y - (\alpha  + 3) = 0,$ $x + y - 1 = 0$ संगत है

$k$  के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा

  • [IIT 1988]

यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण  $x =$

समीकरणों $x + ay = 0,$ $az + y = 0$ और $ax + z = 0$ के अनन्त हल हों, तो  $a $ का मान होगा

  • [IIT 2003]