- Home
- Standard 12
- Mathematics
यदि $a_i^2 + b_i^2 + c_i^2 = 1,\,\,(i = 1,2,3)$ और ${a_i}{a_j} + {b_i}{b_j} + {c_i}{c_j} = 0$ $(i \ne j,i,j = 1,2,3)$ तब ${\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}\,} \right|^2}$ का मान है
$0$
$1/2$
$1$
$2$
Solution
${\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|\,\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$,
$[\because \,|A| = |A'|]$
$ = \left| {\,\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}\,} \right| = 1$.