3 and 4 .Determinants and Matrices
medium

$\left| {\,\begin{array}{*{20}{c}}{{{\log }_3}512}&{{{\log }_4}3}\\{{{\log }_3}8}&{{{\log }_4}9}\end{array}\,} \right| \times \left| {\,\begin{array}{*{20}{c}}{{{\log }_2}3}&{{{\log }_8}3}\\{{{\log }_3}4}&{{{\log }_3}4}\end{array}\,} \right|=$

A

$7$

B

$10$

C

$13$

D

$17$

Solution

(b) $\left| {\,\begin{array}{*{20}{c}}{{{\log }_2}512}&{{{\log }_8}3}\\{{{\log }_3}8}&{{{\log }_3}9}\end{array}\,} \right|$  $×$  $\left| {\,\begin{array}{*{20}{c}}{{{\log }_2}3}&{{{\log }_8}3}\\{{{\log }_3}4}&{{{\log }_3}4}\end{array}\,} \right|$

$ = \left( {\frac{{\log 512}}{{\log 3}} \times \frac{{\log 9}}{{\log 4}} – \frac{{\log 3}}{{\log 4}} \times \frac{{\log 8}}{{\log 3}}} \right)$

$×$ $\left( {\frac{{\log 3}}{{\log 2}} \times \frac{{\log 4}}{{\log 3}} – \frac{{\log 3}}{{\log 8}} \times \frac{{\log 4}}{{\log 3}}} \right)$

$= \left( {\frac{{\log {2^9}}}{{\log 3}} \times \frac{{\log {3^2}}}{{\log {2^2}}} – \frac{{\log {2^3}}}{{\log {2^2}}}} \right)$ $×$ $\left( {\frac{{\log {2^2}}}{{\log 2}} – \frac{{\log {2^2}}}{{\log {2^3}}}} \right)$

$= \left( {\frac{{9 \times 2}}{2} – \frac{3}{2}} \right)\,\left( {2 – \frac{2}{3}} \right) = \frac{{15}}{2} \times \frac{4}{3} = 10$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.