- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
If $A = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{ - \sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]$and $B = \left[ {\begin{array}{*{20}{c}}{\cos \beta }&{ - \sin \beta }\\{\sin \beta }&{\cos \beta }\end{array}} \right]$, then the correct relation is
A
${A^2} = {B^2}$
B
$A + B = B - A$
C
$AB = BA$
D
None of these
Solution
(c) Clearly, $AB = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{ – \sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos \beta }&{ – \sin \beta }\\{\sin \beta }&{\cos \beta }\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}{\cos (\alpha + \beta )}&{ – \sin (\alpha + \beta )}\\{\sin (\alpha + \beta )}&{\cos (\alpha + \beta )}\end{array}} \right] = BA$ (verify).
Standard 12
Mathematics