3 and 4 .Determinants and Matrices
medium

If $A = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{ - \sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]$and $B = \left[ {\begin{array}{*{20}{c}}{\cos \beta }&{ - \sin \beta }\\{\sin \beta }&{\cos \beta }\end{array}} \right]$, then the correct relation is

A

${A^2} = {B^2}$

B

$A + B = B - A$

C

$AB = BA$

D

None of these

Solution

(c) Clearly, $AB = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{ – \sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\cos \beta }&{ – \sin \beta }\\{\sin \beta }&{\cos \beta }\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}{\cos (\alpha + \beta )}&{ – \sin (\alpha + \beta )}\\{\sin (\alpha + \beta )}&{\cos (\alpha + \beta )}\end{array}} \right] = BA$ (verify).

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.