- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि $A = \left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]$, जहाँ $i = \sqrt { - 1} $, तो सत्य सम्बन्ध है
A
$A + B = O$
B
${A^2} = {B^2}$
C
$A - B = O$
D
${A^2} + {B^2} = O$
Solution
(b) सम्बन्ध ${A^2} = {B^2}$ सत्य है, क्योंकि ${A^2} = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&{ – 1}\end{array}} \right]$ व ${B^2} = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&{ – 1}\end{array}} \right]$ एक ही आव्यूह है।
Standard 12
Mathematics