3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]$and $AB = O$, then $B =$

A

$\left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}0&1\\{ - 1}&0\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&0\end{array}} \right]$

Solution

(d) Since $\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right] = O = AB$
==> $B = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&0\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.