- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि $A = \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]$और $AB = O$, तो $B = $
A
$\left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right]$
B
$\left[ {\begin{array}{*{20}{c}}0&1\\{ - 1}&0\end{array}} \right]$
C
$\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]$
D
$\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&0\end{array}} \right]$
Solution
(d) चूँकि$\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right] = O = AB$==> $B = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&0\end{array}} \right]$.
Standard 12
Mathematics
Similar Questions
medium