3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right]$, then ${A^4}$ is equal to

A

$\left[ {\begin{array}{*{20}{c}}1&{{a^4}}\\0&1\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}4&{4a}\\0&4\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}4&{{a^4}}\\0&4\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}1&{4a}\\0&1\end{array}} \right]$

Solution

(d) ${A^2} = A.\,A = \left[ {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{2a}\\0&1\end{array}} \right]$

${A^3} = A.\,{A^2} = \left[ {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&{2a}\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{3a}\\0&1\end{array}} \right]$

${A^4} = A.\,{A^3} = \left[ {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&{3a}\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{4a}\\0&1\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.