3 and 4 .Determinants and Matrices
easy

यदि $A = \left( {\begin{array}{*{20}{c}}i&1\\0&i\end{array}} \right)$, तो ${A^4}$ का मान होगा

A

$\left( {\begin{array}{*{20}{c}}1&{ - 4i}\\0&1\end{array}} \right)$

B

$\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 4i}\\0&{ - 1}\end{array}} \right)$

C

$\left( {\begin{array}{*{20}{c}}{ - i}&4\\0&i\end{array}} \right)$

D

$\left( {\begin{array}{*{20}{c}}1&4\\0&1\end{array}} \right)$

Solution

(a) $A.A = \left[ {\begin{array}{*{20}{c}}{ – 1}&{2i}\\0&{ – 1}\end{array}} \right]$ ,

${A^4} = \left[ {\begin{array}{*{20}{c}}1&{ – 4i}\\0&1\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.