3 and 4 .Determinants and Matrices
easy

જો $A = \left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right],$ તો ${A^{100}} = $

A

${2^{100}}A$

B

${2^{99}}A$

C

${2^{101}}A$

D

એકપણ નહી.

Solution

(b) $A = \left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]$

${A^2} = \left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]\,\left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]$= $\left[ {\,\begin{array}{*{20}{c}}2&2\\2&2\end{array}\,} \right] = 2\left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]$

${A^3} = 2\,\left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]\,\left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right] = {2^2}\left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]$

${A^n} = {2^{n – 1}}\left[ {\,\begin{array}{*{20}{c}}1&1\\1&1\end{array}\,} \right]$ ==> ${A^{100}} = {2^{99}}\left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.