- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A = \left( {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&2\end{array}} \right)$ and $I$ is the unit matrix of order $2$, then ${A^2}$ equals
A
$4A - 3I$
B
$3A - AI$
C
$A - I$
D
$A + I$
Solution
(a) ${A^2} = A\,.\,A = \left[ {\begin{array}{*{20}{c}}{\rm{2}}&{ – 1}\\{ – 1}&2\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{\rm{2}}&{ – 1}\\{ – 1}&2\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\rm{5}}&{ – 4}\\{ – 4}&5\end{array}} \right]$
==> $4A – 3I = \,\left[ {\begin{array}{*{20}{c}}{\rm{8}}&{ – 4}\\{ – 4}&8\end{array}} \right]\, – \,\left[ {\begin{array}{*{20}{c}}{\rm{3}}&0\\0&3\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}5&{ – 4}\\{ – 4}&5\end{array}} \right]$.
Standard 12
Mathematics
Similar Questions
normal