3 and 4 .Determinants and Matrices
easy

If $\left[ {\begin{array}{*{20}{c}}1&2&3\\3&1&2\\2&3&1\end{array}} \right]\,\left[ \begin{array}{l}x\\y\\z\end{array} \right] = \left[ {\begin{array}{*{20}{c}}4&{ - 2}\\0&{ - 6}\\{ - 1}&2\end{array}} \right]\,\left[ \begin{array}{l}2\\1\end{array} \right]$, then $(x,y,z)$=

A

$( - 4,\,2,\,2)$

B

$(4,\, - 2,\, - 2)$

C

$(4,\,2,\,2)$

D

$( - 4,\, - 2,\, - 2)$

Solution

(a) $\left[ {\begin{array}{*{20}{c}}1&2&3\\3&1&2\\2&3&1\end{array}} \right]\,\,\left[ \begin{array}{l}x\\y\\z\end{array} \right] = \left[ {\begin{array}{*{20}{c}}4\\0\\{ – 1}\end{array}\,\,\begin{array}{*{20}{c}}{ – 2}\\{ – 6}\\2\end{array}} \right]\,\left[ \begin{array}{l}2\\1\end{array} \right]\,$

$\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,x + 2y + 3z = 6\\\, \Rightarrow \,\,\,\,\,3x + y + 2z = – \,6\\\,{\rm{ }}2x + 3y + z = 0\end{array}$

On Simplification the above equation, we get the required result i.e.,

$x = – 4,\,y = 2,\,z = 2$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.