3 and 4 .Determinants and Matrices
hard

Let $\alpha$ and $\beta$ be real numbers. Consider a $3 \times 3$ matrix $A$ such that $A ^2=3 A +\alpha I$. If $A ^4=21 A +\beta I$, then

A

$\alpha=1$

B

$\alpha=4$

C

$\beta=8$

D

$\beta=-8$

(JEE MAIN-2023)

Solution

$A ^2=3 A +\alpha I$

$A ^3=3 A ^2+\alpha A$

$A ^3=3(3 A +\alpha I )+\alpha A$

$A ^3=9 A +\alpha A +3 \alpha I$

$A ^4=(9+\alpha) A ^2+3 \alpha A$

$=(9+\alpha)(3 A +\alpha I )+3 \alpha A$

$= A (27+6 \alpha)+\alpha(9+\alpha)$

$\Rightarrow 27+6 \alpha=21 \Rightarrow \alpha=-1$

$\Rightarrow \beta=\alpha(9+\alpha)=-8$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.