3 and 4 .Determinants and Matrices
hard

If $A = \left[ {\begin{array}{*{20}{c}}1&2&1\\0&1&{ - 1}\\3&{ - 1}&1\end{array}} \right]$, then

A

${A^3} + 3{A^2} + A - 9{I_3} = O$

B

${A^3} - 3{A^2} + A + 9{I_3} = O$

C

${A^3} + 3{A^2} - A + 9{I_3} = O$

D

${A^3} - 3{A^2} - A + 9{I_3} = O$

Solution

(d) $A = \left[ {\begin{array}{*{20}{c}}1&2&1\\0&1&{ – 1}\\3&{ – 1}&1\end{array}} \right]$

${A^2} = A\,.\,A = \left[ {\begin{array}{*{20}{c}}1&2&1\\0&1&{ – 1}\\3&{ – 1}&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&2&1\\0&1&{ – 1}\\3&{ – 1}&1\end{array}} \right]\,$$ = \left[ {\begin{array}{*{20}{c}}4&3&0\\{ – 3}&2&{ – 2}\\6&4&5\end{array}} \right]$

$A\,.\,{A^2} = \left[ {\begin{array}{*{20}{c}}1&2&1\\0&1&{ – 1}\\3&{ – 1}&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}4&3&0\\{ – 3}&2&{ – 2}\\6&4&5\end{array}} \right]\, = \left[ {\begin{array}{*{20}{c}}4&{11}&1\\{ – 9}&{ – 2}&{ – 7}\\{21}&{11}&7\end{array}} \right]$

==> ${A^3} – 3{A^2} – A + 9{I_3} = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.