3.Trigonometrical Ratios, Functions and Identities
easy

If $\sin \theta = \frac{{ - 4}}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2} = $

A

$\frac{1}{{\sqrt 5 }}$

B

$ - \frac{1}{{\sqrt 5 }}$

C

$\sqrt {\frac{2}{5}} $

D

$ - \sqrt {\frac{2}{5}} $

Solution

(b) Given that $\sin \theta = – \frac{4}{5}$ and $\theta $ lies in the $III$ quadrant.

$ \Rightarrow \cos \theta = \sqrt {1 – \frac{{16}}{{25}}} = \pm \frac{3}{5}$

$\cos \frac{\theta }{2} = \pm \sqrt {\frac{{1 + \cos \theta }}{2}} $

$= \sqrt {\frac{{1 – 3/5}}{2}} = \pm \sqrt {\frac{1}{5}} $

But $\cos \frac{\theta }{2} = – \frac{1}{{\sqrt 5 }}.$

since $\frac{\theta }{2}$ will be in $II$ quadrant.

Hence $\cos \frac{\theta }{2} = – \frac{1}{{\sqrt 5 }}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.