- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
easy
यदि $\sin \theta = \frac{{ - 4}}{5}$ तथा $\theta $ तीसरे चतुर्थांश में हो, तो $\cos \frac{\theta }{2} = $
A
$\frac{1}{{\sqrt 5 }}$
B
$ - \frac{1}{{\sqrt 5 }}$
C
$\sqrt {\frac{2}{5}} $
D
$ - \sqrt {\frac{2}{5}} $
Solution
दिया है $\sin \theta = – \frac{4}{5}$ एवं $\theta $ तृतीय चतुर्थांष में है
$ \Rightarrow \cos \theta = \sqrt {1 – \frac{{16}}{{25}}} = \pm \frac{3}{5}$
$\cos \frac{\theta }{2} = \pm \sqrt {\frac{{1 + \cos \theta }}{2}} $
$= \sqrt {\frac{{1 – 3/5}}{2}} = \pm \sqrt {\frac{1}{5}} $
लेकिन $\cos \frac{\theta }{2} = – \frac{1}{{\sqrt 5 }}$
चूँकि $\frac{\theta }{2}$ द्वितीय चतुर्थांष में है।
अत: $\cos \frac{\theta }{2} = – \frac{1}{{\sqrt 5 }}$.
Standard 11
Mathematics