3.Trigonometrical Ratios, Functions and Identities
easy

If $\cos \theta = \frac{1}{2}\left( {x + \frac{1}{x}} \right)$, then $\frac{1}{2}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = $

A

$\sin 2\theta $

B

$\cos \,2\theta $

C

$\tan \,2\theta $

D

$\sec \,2\theta $

Solution

(b) Given that $\cos \theta = \frac{1}{2}\,\left( {x + \frac{1}{x}} \right)\,\, $

$\Rightarrow \,x + \frac{1}{x} = 2\,\cos \theta $

We know that ${x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} \right)^2} – 2$

$ = {(2\cos \theta )^2} – 2 = 4\,{\cos ^2}\theta – 2 = 2\,\cos \,\,2\theta $

$\therefore \,\,\frac{1}{2}\,\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = \frac{1}{2} \times 2\,\cos \,2\theta = \cos \,2\theta $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.