- Home
- Standard 11
- Mathematics
If $a\cos \theta + b\sin \theta = m$ and $a\sin \theta - b\cos \theta = n,$ then ${a^2} + {b^2} = $
$m + n$
${m^2} - {n^2}$
${m^2} + {n^2}$
None of these
Solution
(c) Given that $a\,\cos \theta + b\,\sin \theta = m$
and $a\,\sin \,\theta – b\,\cos \theta = n.$
Squaring and adding, we get
${(a\,\,\cos \theta + b\,\sin \theta )^2} + {(a\,\sin \theta – b\,\cos \theta )^2} = {m^2} + {n^2}$
$ \Rightarrow \,\,{a^2}({\cos ^2}\theta + {\sin ^2}\theta ) + {b^2}({\cos ^2}\theta + {\sin ^2}\theta )$
$ + 2ab\,(\cos \theta \,\sin \theta – \sin \theta \,\cos \theta ) = {m^2} + {n^2}$ Hence, ${a^2} + {b^2} = {m^2} + {n^2}.$
Trick : Here we can guess that the value of ${a^2} + {b^2}$ is independent of $\theta$, so put any suitable value of $\theta$
$i.e.$ $\frac{\pi }{2},$ so that $b = m$ and $a = n.$
Hence ${a^2} + {b^2} = {m^2} + {n^2}.$
(Also check for other value of $\theta$).