- Home
- Standard 11
- Mathematics
If $\cot \,\theta + \tan \theta = m$ and $\sec \theta - \cos \theta = n,$ then which of the following is correct
$m{(m{n^2})^{1/3}} - n{(n{m^2})^{1/3}} = 1$
$m{({m^2}n)^{1/3}} - n{(m{n^2})^{1/3}} = 1$
$n{(m{n^2})^{1/3}} - m{(n{m^2})^{1/3}} = 1$
$n{({m^2}n)^{1/3}} - m{(m{n^2})^{1/3}} = 1$
Solution
(a) As given
$\frac{1}{{\tan \theta }} + \tan \theta = m\, $
$\Rightarrow \,1 + {\tan ^2}\theta = m\,\tan \theta $
$ \Rightarrow \,\,{\sec ^2}\theta = m\,\tan \theta $…..$(i) $
and $\sec \theta – \cos \theta = n\,\, \Rightarrow \,\,{\sec ^2}\theta – 1 = n\,\sec \theta $
$ \Rightarrow \,\,{\tan ^2}\theta = n\,\,\sec \theta $
$ \Rightarrow \,\,{\tan ^4}\theta = {n^2}\,{\sec ^2}\theta = {n^2}.\,m\,\,\tan \theta $ {by $(i)$}
$ \Rightarrow \,\,{\tan ^3}\theta = {n^2}m\,,\,\,\,(\,\,\,\tan \theta \ne 0)$
$\Rightarrow \,\,\tan \theta = {({n^2}m)^{1/3}}$…..$(ii)$
Also, ${\sec ^2}\theta = m\,\,\tan \theta = m\,{({n^2}m)^{1/3}}$ {by $(i)$ and $(ii)$}
$\therefore$ Using the identity ${\sec ^2}\theta – {\tan ^2}\theta = 1$
$ \Rightarrow \,\,m\,{(m{n^2})^{1/3}} – {({n^2}m)^{2/3}} = 1$
$ \Rightarrow \,\,m\,{(m{n^2})^{1/3}} – n\,{(n{m^2})^{1/3}} = 1.$