Gujarati
3.Trigonometrical Ratios, Functions and Identities
normal

The product $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right)$ $. .\left(1+\tan 45^{\circ}\right)$ equals

A

$2^{21}$

B

$2^{22}$

C

$2^{23}$

D

$2^{25}$

(KVPY-2010)

Solution

(c)

We have,

$\begin{array}{l}\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right) \\ \text { We know that, } \\ (1+\tan \theta)\left(1+\tan \left(45^{\circ}-\theta\right)\right)=2 \\ \therefore\left(1+\tan 45^{\circ}\right) \\ \left(1+\tan 43^{\circ}\right)\left(1+\tan 44^{\circ}\right)\left(1+\tan 2^{\circ}\right) \\ \left(1+\tan 45^{\circ}\right) \\ \Rightarrow \quad 2^{22} \cdot 2=2^{23} \end{array}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.