- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
easy
If $A + C = B,$ then $\tan A\,\tan B\,\tan C = $
A
$\tan A\,\tan B + \tan \,C$
B
$\tan \,B - \tan \,C - \tan \,A$
C
$\tan A + \tan C - \tan B$
D
$ - \,(\tan A\tan B + \tan C)$
Solution
(b) $B = A + C \Rightarrow \tan B = \tan (A + C)$
==> $\tan B = \frac{{\tan A + \tan C}}{{1 – \tan A\tan C}}$
==> $\tan A\tan B\tan C = \tan B – \tan A – \tan C$.
Standard 11
Mathematics