If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $
$\frac{{n\pi }}{4}$
$\frac{{n\pi }}{2}$
$\frac{{n\pi }}{8}$
None of these
If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then
If $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to
Find the general solution of $\cos ec\, x=-2$
The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is
If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is